Flow Chemistry – Review Articles

A complete list of publications of C. O. Kappe can be found at his ResearchID account

20. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow
C. Hone, C. O. Kappe, Top. Curr. Chem. 2019, 377, 2. DOI: 10.1007/s41061-018-0226-z
19. My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren’t Microwaves
C. O. Kappe, Chem. Rec. 2019, 19, 15-39. DOI: 10.1002/tcr.201800045
18. Forbidden Chemistries – Paths to a Sustainable Future Engaging Continuous Processing
B. Gutmann, C. O. Kappe, J. Flow. Chem. 2017, 7, 65-71. DOI: 10.1556/1846.2017.00009
17. Why Flow Means Green – Evaluating the Merits of Continuous Processing in the Context of Sustainability
D. Dallinger, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2017, 7, 6-12. DOI: 10.1016/j.cogsc.2017.06.003
16. Halogenation of Organic Compounds using Continuous Flow and Microreactor Technology
D. Cantillo, C. O. Kappe, React. Chem. Eng. 2017, 2, 7-19. DOI: 10.1039/C6RE00186F
15. The Use of Molecular Oxygen in Pharmaceutical Manufacturing – Is Flow the Way to Go?
C. Hone, D. Roberge, C. O. Kappe, ChemSusChem 2017, 10, 32-41. DOI: 10.1002/cssc.201601321
14. Enabling Technologies for Diazomethane Generation and Transformation
D. Dallinger, C. O. Kappe, Aldrichim. Acta 2016, 49, 57-66.
13. Aerobic Oxidations in Continuous Flow
B. Pieber, C. O. Kappe, Top. Organometal. Chem. 2016, 57, 97-137. DOI: 10.1007/3418_2015_133
12. Taming „Forbidden“ Olefin Reductions Using Hydrazine and Oxygen by Continuous Flow Technology
B. Pieber, C. O. Kappe, Chim. Oggi/Chem. Today 2016, 34(3), 38-42.
11. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients
B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688-6729. DOI: 10.1002/anie.201409318 (Web of Science “Highly Cited Paper”).
10. Homogeneous Vs Immobilized Palladium Catalysts for Continuous Flow Cross-Coupling Chemistry
D. Cantillo, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(S), 6-10.
9. Forbidden Chemistries Go Flow in API Synthesis
B. Gutmann, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(3), 14-18.
8. Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow – A Critical Assessment of the Reaction Mechanism and Metal Leaching
D. Cantillo, C. O. Kappe, ChemCatChem 2014, 6, 3286-3305. DOI: 10.1002/cctc.201402483
7. Anthropogenic Reaction Parameters – The Missing Link between Chemical Intuition and the Available Chemical Space
M. Keserű, T. Soós, C.O. Kappe, Chem. Sov. Rev. 2014, 43, 5387-5399. DOI: 10.1039/c3cs60423c
6. The Microwave-to-Flow Paradigm: Translating High-Temperature Batch Microwave Chemistry to Scalable Continuous Flow Processes
T. N. Glasnov, C. O. Kappe, Chem. Eur. J. 2011, 17, 11956-11968. DOI: 10.1002/chem.201102065
5. Heterogeneous Catalytic Hydrogenation Reactions Using Continuous Flow Reactors
M. Irfan, T. N. Glasnov, C. O. Kappe, ChemSusChem, 2011, 4, 300-316. DOI: 10.1002/cssc.201000354
4. Continuous Flow Synthesis of Heterocycles
T. N. Glasnov, C. O. Kappe, Heterocycl. Chem. 2011, 48, 11-29. DOI: 10.1002/jhet.568
3. Continuous Flow Organic Synthesis under High Temperature/Pressure Conditions
T. Razzaq, C.O. Kappe, Chem. Asian J. 2010, 5, 1274-1289. DOI: 10.1002/asia.201000010 (Web of Science “Highly Cited Paper”).
2. Click Chemistry under Non-classical Reaction Conditions
C.O. Kappe, E. Van der Eycken, Chem. Soc. Rev. 2010, 39, 1280-1290. DOI: 10.1039/b901973c (Web of Science “Highly Cited Paper”).
1. Microwave-Assisted Synthesis under Continuous Flow Conditions
T. N. Glasnov, C.O. Kappe, Macromol. Rapid Commun. 2007, 28, 395-410. DOI: 10.1002/marc.200600665