Flow Chemistry – Review Articles
A complete list of publications of C. O. Kappe can be found at his Web of Science account
30. | Dynamic Flow Experiments for Data-Rich Optimization J. D. Williams, P. Sagmeister, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2024, 47, 100921. DOI: 10.1016/j.cogsc.2024.100921 |
29. | The Rocky Road to a Digital Lab P. Sagmeister, J. D. Williams, C. O. Kappe, CHIMIA 2023, 77, 300-306. DOI: 10.2533/chimia.2023.300 |
28. | Catalytic Static Mixers for Flexible and Scalable Hydrogenation Reactions in Continuous Flow J. D. Williams, C. O. Kappe, Chim. Oggi/Chem. Today 2022, 40(4), 6-9. |
27. | Towards the Standardization of Flow Chemistry Protocols for Organic Reactions C. A. Hone, C. O. Kappe, Chem. Methods 2021, 1, 454–467. DOI: 10.1002/cmtd.202100059 |
26. | Continuous Flow Asymmetric Synthesis of Chiral Active Pharmaceutical Ingredients and their Advanced Intermediates S. Ötvös, C. O. Kappe, Green Chem. 2021, 23, 6117–6138. DOI: 10.1039/D1GC01615F |
25. | Oscillatory Flow Reactors for Synthetic Chemistry Applications P. Bianchi, J. D. Williams, C. O. Kappe, J. Flow. Chem. 2020, 10, 475-490. DOI: 10.1007/s41981-020-00105-6 |
24. | The Concept of ”Chemical Generators”: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow D. Dallinger, B. Gutmann, C. O. Kappe, Acc. Chem. Res. 2020, 53, 1330-1341. DOI: 10.1021/acs.accounts.0c00199 |
23. | Membrane Microreactors for the On‐Demand Generation, Separation and Reaction of Gases C. A. Hone, C. O. Kappe, Chem. Eur. J. 2020, 26, 13108–13117. DOI: 10.1002/chem.202001942 |
22. | Recent Advances towards Sustainable Flow Photochemistry J. D. Williams, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2020, 10, 100351. DOI: 10.1016/j.cogsc.2020.05.001 |
21. | Modern Flow Photochemistry: Case Studies in Reaction Development toward Industrial Scale Processing J. D. Williams, C. O. Kappe, Chim. Oggi/Chem. Today 2019, 37(5), 36-39. |
20. | The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow C. A. Hone, C. O. Kappe, Top. Curr. Chem. 2019, 377, 2. DOI: 10.1007/s41061-018-0226-z |
19. | My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren’t Microwaves C. O. Kappe, Chem. Rec. 2019, 19, 15-39. DOI: 10.1002/tcr.201800045 |
18. | Forbidden Chemistries – Paths to a Sustainable Future Engaging Continuous Processing B. Gutmann, C. O. Kappe, J. Flow. Chem. 2017, 7, 65-71. DOI: 10.1556/1846.2017.00009 |
17. | Why Flow Means Green – Evaluating the Merits of Continuous Processing in the Context of Sustainability D. Dallinger, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2017, 7, 6-12. DOI: 10.1016/j.cogsc.2017.06.003 |
16. | Halogenation of Organic Compounds using Continuous Flow and Microreactor Technology D. Cantillo, C. O. Kappe, React. Chem. Eng. 2017, 2, 7-19. DOI: 10.1039/C6RE00186F |
15. | The Use of Molecular Oxygen in Pharmaceutical Manufacturing – Is Flow the Way to Go? C. A. Hone, D. Roberge, C. O. Kappe, ChemSusChem 2017, 10, 32-41. DOI: 10.1002/cssc.201601321 |
14. | Enabling Technologies for Diazomethane Generation and Transformation D. Dallinger, C. O. Kappe, Aldrichim. Acta 2016, 49, 57-66. |
13. | Aerobic Oxidations in Continuous Flow B. Pieber, C. O. Kappe, Top. Organometal. Chem. 2016, 57, 97-137. DOI: 10.1007/3418_2015_133 |
12. | Taming „Forbidden“ Olefin Reductions Using Hydrazine and Oxygen by Continuous Flow Technology B. Pieber, C. O. Kappe, Chim. Oggi/Chem. Today 2016, 34(3), 38-42. |
11. | Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688-6729. DOI: 10.1002/anie.201409318 (Web of Science “Highly Cited Paper”). |
10. | Homogeneous Vs Immobilized Palladium Catalysts for Continuous Flow Cross-Coupling Chemistry D. Cantillo, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(S), 6-10. |
9. | Forbidden Chemistries Go Flow in API Synthesis B. Gutmann, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(3), 14-18. |
8. | Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow – A Critical Assessment of the Reaction Mechanism and Metal Leaching D. Cantillo, C. O. Kappe, ChemCatChem 2014, 6, 3286-3305. DOI: 10.1002/cctc.201402483 |
7. | Anthropogenic Reaction Parameters – The Missing Link between Chemical Intuition and the Available Chemical Space M. Keserű, T. Soós, C.O. Kappe, Chem. Sov. Rev. 2014, 43, 5387-5399. DOI: 10.1039/c3cs60423c |
6. | The Microwave-to-Flow Paradigm: Translating High-Temperature Batch Microwave Chemistry to Scalable Continuous Flow Processes T. N. Glasnov, C. O. Kappe, Chem. Eur. J. 2011, 17, 11956-11968. DOI: 10.1002/chem.201102065 |
5. | Heterogeneous Catalytic Hydrogenation Reactions Using Continuous Flow Reactors M. Irfan, T. N. Glasnov, C. O. Kappe, ChemSusChem, 2011, 4, 300-316. DOI: 10.1002/cssc.201000354 |
4. | Continuous Flow Synthesis of Heterocycles T. N. Glasnov, C. O. Kappe, J. Heterocycl. Chem. 2011, 48, 11-29. DOI: 10.1002/jhet.568 |
3. | Continuous Flow Organic Synthesis under High Temperature/Pressure Conditions T. Razzaq, C.O. Kappe, Chem. Asian J. 2010, 5, 1274-1289. DOI: 10.1002/asia.201000010 (Web of Science “Highly Cited Paper”). |
2. | Click Chemistry under Non-classical Reaction Conditions C.O. Kappe, E. Van der Eycken, Chem. Soc. Rev. 2010, 39, 1280-1290. DOI: 10.1039/b901973c (Web of Science “Highly Cited Paper”). |
1. | Microwave-Assisted Synthesis under Continuous Flow Conditions T. N. Glasnov, C.O. Kappe, Macromol. Rapid Commun. 2007, 28, 395-410. DOI: 10.1002/marc.200600665 |