Flow Chemistry – Review Articles

A complete list of publications of C. O. Kappe can be found at his Web of Science account


29. Dynamic Flow Experiments for Data-Rich Optimization
J. D. Williams, P. Sagmeister, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2024, 47, 100921. DOI: 10.1016/j.cogsc.2024.100921
28. Catalytic Static Mixers for Flexible and Scalable Hydrogenation Reactions in Continuous Flow
J. D. Williams, C. O. Kappe, Chim. Oggi/Chem. Today 2022, 40(4), 6-9.
27. Towards the Standardization of Flow Chemistry Protocols for Organic Reactions
C. A. Hone, C. O. Kappe, Chem. Methods 2021, 1, 454–467. DOI: 10.1002/cmtd.202100059
26. Continuous Flow Asymmetric Synthesis of Chiral Active Pharmaceutical Ingredients and their Advanced Intermediates
S. Ötvös, C. O. Kappe, Green Chem. 2021, 23, 6117–6138. DOI: 10.1039/D1GC01615F
25. Oscillatory Flow Reactors for Synthetic Chemistry Applications
P. Bianchi, J. D. Williams, C. O. Kappe, J. Flow. Chem. 2020, 10, 475-490. DOI: 10.1007/s41981-020-00105-6
24. The Concept of ”Chemical Generators”: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow
D. Dallinger, B. Gutmann, C. O. Kappe, Acc. Chem. Res. 2020, 53, 1330-1341. DOI: 10.1021/acs.accounts.0c00199
23. Membrane Microreactors for the On‐Demand Generation, Separation and Reaction of Gases
C. A. Hone, C. O. Kappe, Chem. Eur. J. 2020, 26, 13108–13117. DOI: 10.1002/chem.202001942
22. Recent Advances towards Sustainable Flow Photochemistry
J. D. Williams, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2020, 10, 100351. DOI: 10.1016/j.cogsc.2020.05.001
21. Modern Flow Photochemistry: Case Studies in Reaction Development toward Industrial Scale Processing
J. D. Williams, C. O. Kappe, Chim. Oggi/Chem. Today 2019, 37(5), 36-39.
20. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow
C. A. Hone, C. O. Kappe, Top. Curr. Chem. 2019, 377, 2. DOI: 10.1007/s41061-018-0226-z
19. My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren’t Microwaves
C. O. Kappe, Chem. Rec. 2019, 19, 15-39. DOI: 10.1002/tcr.201800045
18. Forbidden Chemistries – Paths to a Sustainable Future Engaging Continuous Processing
B. Gutmann, C. O. Kappe, J. Flow. Chem. 2017, 7, 65-71. DOI: 10.1556/1846.2017.00009
17. Why Flow Means Green – Evaluating the Merits of Continuous Processing in the Context of Sustainability
D. Dallinger, C. O. Kappe, Curr. Opin. Green Sust. Chem. 2017, 7, 6-12. DOI: 10.1016/j.cogsc.2017.06.003
16. Halogenation of Organic Compounds using Continuous Flow and Microreactor Technology
D. Cantillo, C. O. Kappe, React. Chem. Eng. 2017, 2, 7-19. DOI: 10.1039/C6RE00186F
15. The Use of Molecular Oxygen in Pharmaceutical Manufacturing – Is Flow the Way to Go?
C. A. Hone, D. Roberge, C. O. Kappe, ChemSusChem 2017, 10, 32-41. DOI: 10.1002/cssc.201601321
14. Enabling Technologies for Diazomethane Generation and Transformation
D. Dallinger, C. O. Kappe, Aldrichim. Acta 2016, 49, 57-66.
13. Aerobic Oxidations in Continuous Flow
B. Pieber, C. O. Kappe, Top. Organometal. Chem. 2016, 57, 97-137. DOI: 10.1007/3418_2015_133
12. Taming „Forbidden“ Olefin Reductions Using Hydrazine and Oxygen by Continuous Flow Technology
B. Pieber, C. O. Kappe, Chim. Oggi/Chem. Today 2016, 34(3), 38-42.
11. Continuous-Flow Technology—A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients
B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688-6729. DOI: 10.1002/anie.201409318 (Web of Science “Highly Cited Paper”).
10. Homogeneous Vs Immobilized Palladium Catalysts for Continuous Flow Cross-Coupling Chemistry
D. Cantillo, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(S), 6-10.
9. Forbidden Chemistries Go Flow in API Synthesis
B. Gutmann, C. O. Kappe, Chim. Oggi/Chem. Today 2015, 33(3), 14-18.
8. Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow – A Critical Assessment of the Reaction Mechanism and Metal Leaching
D. Cantillo, C. O. Kappe, ChemCatChem 2014, 6, 3286-3305. DOI: 10.1002/cctc.201402483
7. Anthropogenic Reaction Parameters – The Missing Link between Chemical Intuition and the Available Chemical Space
M. Keserű, T. Soós, C.O. Kappe, Chem. Sov. Rev. 2014, 43, 5387-5399. DOI: 10.1039/c3cs60423c
6. The Microwave-to-Flow Paradigm: Translating High-Temperature Batch Microwave Chemistry to Scalable Continuous Flow Processes
T. N. Glasnov, C. O. Kappe, Chem. Eur. J. 2011, 17, 11956-11968. DOI: 10.1002/chem.201102065
5. Heterogeneous Catalytic Hydrogenation Reactions Using Continuous Flow Reactors
M. Irfan, T. N. Glasnov, C. O. Kappe, ChemSusChem, 2011, 4, 300-316. DOI: 10.1002/cssc.201000354
4. Continuous Flow Synthesis of Heterocycles
T. N. Glasnov, C. O. Kappe, J. Heterocycl. Chem. 2011, 48, 11-29. DOI: 10.1002/jhet.568
3. Continuous Flow Organic Synthesis under High Temperature/Pressure Conditions
T. Razzaq, C.O. Kappe, Chem. Asian J. 2010, 5, 1274-1289. DOI: 10.1002/asia.201000010 (Web of Science “Highly Cited Paper”).
2. Click Chemistry under Non-classical Reaction Conditions
C.O. Kappe, E. Van der Eycken, Chem. Soc. Rev. 2010, 39, 1280-1290. DOI: 10.1039/b901973c (Web of Science “Highly Cited Paper”).
1. Microwave-Assisted Synthesis under Continuous Flow Conditions
T. N. Glasnov, C.O. Kappe, Macromol. Rapid Commun. 2007, 28, 395-410. DOI: 10.1002/marc.200600665